Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 14: 1258323, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38322797

RESUMO

Cognitive impairments are a prevalent consequence of acquired brain injury, dementia, and age-related cognitive decline, hampering individuals' daily functioning and independence, with significant societal and economic implications. While neurorehabilitation represents a promising avenue for addressing these deficits, traditional rehabilitation approaches face notable limitations. First, they lack adaptability, offering one-size-fits-all solutions that may not effectively meet each patient's unique needs. Furthermore, the resource-intensive nature of these interventions, often confined to clinical settings, poses barriers to widespread, cost-effective, and sustained implementation, resulting in suboptimal outcomes in terms of intervention adaptability, intensity, and duration. In response to these challenges, this paper introduces NeuroAIreh@b, an innovative cognitive profiling and training methodology that uses an AI-driven framework to optimize neurorehabilitation prescription. NeuroAIreh@b effectively bridges the gap between neuropsychological assessment and computational modeling, thereby affording highly personalized and adaptive neurorehabilitation sessions. This approach also leverages virtual reality-based simulations of daily living activities to enhance ecological validity and efficacy. The feasibility of NeuroAIreh@b has already been demonstrated through a clinical study with stroke patients employing a tablet-based intervention. The NeuroAIreh@b methodology holds the potential for efficacy studies in large randomized controlled trials in the future.

2.
J Rehabil Assist Technol Eng ; 6: 2055668319859140, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31360538

RESUMO

INTRODUCTION: Action observation neurorehabilitation systems are usually based on the observation of a virtual limb performing different kinds of actions. In this way, the activity in the frontoparietal Mirror Neuron System is enhanced, which can be helpful to rehabilitate stroke patients. However, the presence of limbs in such systems might not be necessary to produce mirror activity, for example, frontoparietal mirror activity can be produced just by the observation of virtual tool movements. The objective of this work was to explore to what point the presence of a virtual limb impacts the Mirror Neuron System activity in neurorehabilitation systems. METHODS: The study was conducted by using an action observation neurorehabilitation task during a functional magnetic resonance imaging (fMRI) experiment with healthy volunteers and comparing two action observation conditions that: 1 - included or 2 - did not include a virtual limb. RESULTS: It was found that activity in the Mirror Neuron System was similar during both conditions (i.e. virtual limb present or absent). CONCLUSIONS: These results open up the possibility of using new tasks that do not include virtual limbs in action observation neurorehabilitation environments, which can give more freedom to develop such systems.

3.
J Neuroeng Rehabil ; 13(1): 70, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27503215

RESUMO

BACKGROUND: Virtual Reality (VR) based methods for stroke rehabilitation have mainly focused on motor rehabilitation, but there is increasing interest in integrating motor and cognitive training to increase similarity to real-world settings. Unfortunately, more research is needed for the definition of which type of content should be used in the design of these tools. One possibility is the use of emotional stimuli, which are known to enhance attentional processes. According to the Socioemotional Selectivity Theory, as people age, the emotional salience arises for positive and neutral, but not for negative stimuli. METHODS: For this study we developed a cognitive-motor VR task involving attention and short-term memory, and we investigated the impact of using emotional images of varying valence. The task consisted of finding a target image, shown for only two seconds, among fourteen neutral distractors, and selecting it through arm movements. After performing the VR task, a recall task took place and the patients had to identify the target images among a valence-matched number of distractors. Ten stroke patients participated in a within-subjects experiment with three conditions based on the valence of the images: positive, negative and neutral. Eye movements were recorded during VR task performance with an eye tracking system. RESULTS: Our results show decreased attention for negative stimuli in the VR task performance when compared to neutral stimuli. The recall task shows significantly more wrongly identified images (false memories) for negative stimuli than for neutral. Regression and correlation analyses with the Montreal Cognitive Assessment and the Geriatric Depression Scale revealed differential effects of cognitive function and depressive symptomatology in the encoding and recall of positive, negative and neutral images. Further, eye movement data shows reduced search patterns for wrongly selected stimuli containing emotional content. CONCLUSIONS: The results of this study suggest that it is feasible to use emotional content in a VR based cognitive-motor task for attention and memory training after stroke. Stroke survivors showed less attention towards negative information, exhibiting reduced visual search patterns and more false memories. We have also shown that the use of emotional stimuli in a VR task can provide additional information regarding patient's mood and cognitive status.


Assuntos
Reabilitação do Acidente Vascular Cerebral/métodos , Terapia de Exposição à Realidade Virtual/métodos , Idoso , Atenção , Cognição , Simulação por Computador , Emoções/fisiologia , Feminino , Humanos , Masculino , Memória de Curto Prazo , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...